United States Patent

US009122766B2

(12) 10) Patent No.: US 9,122,766 B2
von Haden et al. 45) Date of Patent: Sep. 1, 2015
(54) REPLACEMENT TIME BASED CACHING 2002/0083148 Al 6/2002 Shaw et al.
FOR PROVIDING SERVER-HOSTED 2002/0154639 Al* 10/2002 Calvertetal. 370/400
CONTENT 2003/0214949 Al* 112003 Shaiklicccoeverernnene 370/394
2006/0064467 Al 3/2006 Libby
. 2006/0069746 Al 3/2006 Davis et al.
(75) Inventors: Kyle Matthew von Haden, Mill Creek, .
WA (US); Ryan Patrick Heaney, (Continued)
gzgfén\gﬁla\ﬁ; (?}esc)“la‘ Blendea, FOREIGN PATENT DOCUMENTS
EP 1868312 Al * 12/2007
(73) Assignee: MICROSOFT TECHNOLOGY EP 2141890 Al * 1/2010
LICENSING, LLC, Redmond, WA Jp 2009188508 A * 8/2009
Us) OTHER PUBLICATIONS
(*) Notice: Sutbj etCt. to aItly (gs(cilaimeé,. thte Eermefﬂ;i; “Web Cache Settings”, Retrieved at <<http://mobilehelp.cymphonix.
%ase Ié lls SZXbeIi‘) N 1 606r da Justed under com/Advanced/Content/User%20Guide/UI%20Tabs/
e (b) by ays. Admin%20Tab/2¢_{ WebCacheSettings.htm, Retrieved Date: Jul.
(21) Appl. No.: 13/604,638 2.2012,pp. 3.
(Continued)
(22) Filed: Sep. 6,2012
(65) Prior Publication Data Primary Examiner — Kostas Katsikis
(74) Attorney, Agent, or Firm — Steve Crocker; Danielle
US 2014/0067913 Al Mar. 6,2014 Johnston-Holmes; Micky Minhas
(51) Int.CL (57) ABSTRACT
GO6F 15/16 (2006.01) . o .
GO6F 12/08 (2006.01) A system is provided in which two sets of content are cached
GO6F 17/30 (2006.01) in a corresponding two caches—a current cache and a next
HO4L 29/08 (2006.01) cache. A client renders content in the current cache and uses
(52) U.S.CL the next cache to define the expiration for the content in the
CPC GO6F 17/30902 (2013.01); HO4L 29/08801 current cache as well as provide the replacement content
(2013.01); HO4L 67/2852 (2013.01) when the current content expires. When a client application
(58) Field of Classification Search renders the content in the current cache, the application
CPC oo HO4L 67/2852; HO4L 29/08801; checks whether the expiration for the current cache has been
GO6F 17/30902 reached according to the expiration defined by the content in
USPC et 709/203 the next cache (which is not being rendered). If the expiration
See application file for complete search history. has been reached, the content in the next cache is moved to the
current cache and rendered. New content can then be down-
(56) References Cited loaded to fill the next cache and define the expiration for the

U.S. PATENT DOCUMENTS

6,591,266 Bl 7/2003 Lietal.
6,868,439 B2* 3/2005 Basuetal. 709/213

:120

121 Server
|

. /
\—(Content (

A

- 130

content formerly in the next cache but now in the current

cache.
20 Claims, 6 Drawing Sheets
/,— 111 ’ Ve 110
(Client
Application
Current Next
T

K 112 \113

US 9,122,766 B2

Page 2
(56) References Cited 2012/0144092 A1* 6/2012 Hsiehetal. ... 711/103
2012/0331228 Al* 12/2012 Shatzetal. 711/118
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

2006/0075110 Al™* 4/2006 Seraphinccccooen 709/227 « o . .
2007/0005606 A1* 1/2007 Ganesan etal. 707/10 g“’“t‘ ‘thal" Pr.OXZJ“'RSngPIe d“fiﬁ%g‘;gg‘_‘m for D/ynam‘c/
2007/0277102 Al* 11/2007 Kanzakiccocoocrvvnnenn. 715/540 ontent trocessing -, hetrieved at b: AWew.org/papers
2009/0077173 Al* 3/2009 Lowery et al. . 709/203 yuan.pdf>>, Proc. of the 8th International Workshop on Web Caching
2009/0204753 Al* 82009 Bridgeetal. 711/106 and Content Distribution(WCW’03), Sep. 2003, pp. 12.
2010/0235321 Al* 9/2010 Shuklaetal. 707/610 “Chapter 1. EXT: Cache Expire”, Retrieved at <<http://typo3.org/
2010/0274857 Al* 10/2010 Garzaetal. 709/206 extension-manuals/cacheexpire/0.4.0/view/1/1/>>, Retrieved Date:
2011/0153839 Al* 6/2011 Rajanetal. .. 709/227 Jul. 2, 2012, pp. 2.
2011/0289533 Al* 11/2011 Whiteetal.ccceeeee. 725/46
2012/0109902 Al* 5/2012 Rozensztejnetal. 707/689 * cited by examiner

U.S. Patent Sep. 1, 2015 Sheet 1 of 6 US 9,122,766 B2

120
/

121 Server
Content
/1 /”0
{ Client
130 Application
Current Next
\ \
\ 112 \ 113
FIG. 1
230

New Content
(and Current
cache 230
expiration) / 00—

|232
Expire Value /}

/ Pre- /

/ seeded y;
7/
J Content /
/

|
|
|
|
|
|
|
|
|
|
|
|
i
I Content
I
|
|
|
|
|
|
|
|
|
|
|
|
|

FIG. 2A FIG. 2B

U.S. Patent

Server

_ 410

Sep. 1, 2015 Sheet 2 of 6

310

Receive new package /

v

Determine prior content expiration from /

new content package data

v

make content from the new package the
current content upon expiration of prior
content

420
430

402 // 401
Client
Package \] m
(Content 2) e —— v
(p-expiration)

FIG. 3

US 9,122,766 B2

320

330

FIG. 4A

Content 1
Expiration date

S

401
Client
|

Content 2

e

402

401
Client
vec | comen

402 7

FIG. 4D

J
FIG. 4B 402 FIG. 4C

U.S. Patent

Sep. 1, 2015

Sheet 3 of 6

< Client Starts >

US 9,122,766 B2

503
/

501\ l‘

Check Cache

502

Content in NO

Fill Cache A and
Cache B with
content

Cache A + B?

504

Cache B
NO

505 \

content

Render Cache A
=

S~

says Cache A
expired?

506
/

Move content
from Cache B to
Cache A

507

Fill Cache B with
new content

-

FIG. 5

U.S. Patent Sep. 1, 2015 Sheet 4 of 6 US 9,122,766 B2

610
4 N
- 7) J
@ TEMPLATES
[Su[M [T [W [Th] F [9a
Aa 615
Blank E— _///
— o(o
- /
_ J
FIG. 6A
4 Y 610
~

@ TEMPLATES

Blank

£

FIG. 6B

U.S. Patent

Sep. 1, 2015

Sheet 5 of 6

700
Client Starts

701
\

702

Cache B
says check
update?

US 9,122,766 B2

703
/

Check Cache

Check Cache B

data

Cache B
says Cache A
expired?

Check Server for
replacement
Content

709

New r-
content?

Fill Cache B with
New r-content

Fill Cache A and
Cache B with
content

content

Content in NO
Cache A+B?
/ 704

YES

/ 706

Render Cache A|

711
/

Move content
from Cache B to
Cache A

FIG.7

712
[

Fill Cache B with
new content

U.S. Patent

Sep. 1, 2015

810

Cer

Sheet 6 of 6

[

US 9,122,766 B2

S
erver 830 Package 3
I
\ 820 Content 3
Expire Current=5
Check Again=2
FIG. 8A
/ 802 801 830
Client ‘
/—840
\,) .\ "L Server Client
updates?
82OJ
FIG. 8B FIG. 8C
no 830 830
updates w w
840 840
Clg‘t Ser:/er Clg;lt
Server updates?
820J SZOJ
FIG. 8D FIG. 8E
S
erver .
850 820
830
r-Content w
801 802 801
802
e 4
Client Client
__Content3 > \) \ »

FIG. 8F FIG. 8G

US 9,122,766 B2

1

REPLACEMENT TIME BASED CACHING
FOR PROVIDING SERVER-HOSTED
CONTENT

BACKGROUND

As faster data speeds become more ubiquitous, a user’s
expectation for a seamless and fast presentation of server-
hosted content increases. To manage the number of repeat
requests for content being downloaded over a network from a
server onto a client device as well as to provide the content
offline or immediately available for rendering, caching is
often used to provide a local copy of the content at (or near)
the client device.

In general, caching online content generally follows a
time-to-live (TTL) caching (which sets an amount of time for
the content being downloaded to be valid before expiring) or
atime of expiration approach (which sets a particular date and
time after which the content is considered expired/invalid) to
turn over into new content. However, when caching online
content for client rendering, these typical TTL and time of
expiration approaches may not be able to be consistently
predictable (turn over into new content at logical times) and
workable with irregular usage by the client (where the client
isn’t launched on a regular basis).

BRIEF SUMMARY

Systems and techniques are provided in which content
does not define its own expiration but instead defines the
expiration of content that is ahead of itself in a cache queue.
For example, an expiration for content that is currently ren-
dered can be defined by a subsequent content in a cache
queue. Content in a cache can be considered valid until con-
tent which can replace it is in place.

According to certain embodiments, when a package of
content is received over a network by a client device, the
content from the package is stored in a next cache and an
expiration value provided with the package is used to assign
an expiration to content in a current cache that is being ren-
dered. In accordance with various embodiments, to establish
an expiration of content that is currently rendered, two sets of
content are present. Of the two sets of content, one set is the
valid content stored in the current cache and the other setis an
available replacement content stored in the next cache and
defines the expiration of the valid content of the current cache.

According to one aspect, a user’s experience does not
involve expired content in which a client must wait for new
content or the client must render old content while the client
retrieves new content and then makes a switch over to the new
content at an inopportune time.

According to another aspect, predictable turnover of
quickly loaded content can be provided for a desirable user
experience even when a client application is not launched on
a regular basis.

According to yet another aspect, content being rendered
will remain valid at least until new content is ready and
downloaded because the content does not self-define its expi-
ration.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an operating environment in accordance with
an embodiment of the invention.

10

15

20

25

30

35

40

45

55

60

65

2

FIG. 2A illustrates data flow in an operating environment
in accordance with an embodiment of the invention.

FIG. 2B shows a representation of a data package in accor-
dance with an embodiment of the invention.

FIG. 3 shows a method for replacement time based caching
in accordance with an embodiment of the invention.

FIGS. 4A-4D illustrate data flow when performing
replacement time based caching in accordance with an
embodiment of the invention.

FIG. 5 shows a process flow of a system using replacement
time based caching in accordance with an embodiment of the
invention.

FIGS. 6A and 6B show a representation of an example
application utilizing replacement time based caching in
accordance with an embodiment of the invention.

FIG. 7 shows a process flow of a system using replacement
time based caching and update check in accordance with an
embodiment of the invention.

FIGS. 8A-8G illustrate data flow when performing
replacement time based caching and update check in accor-
dance with an embodiment of the invention.

DETAILED DESCRIPTION

In accordance with various embodiments of the invention,
systems and techniques are provided in which content does
not define its own expiration but instead defines the expiration
of'content that is ahead of itself in a cache queue, for example,
the content that is currently rendered.

“Rendering” refers to the converting of content, which may
be in the form of coded data, into a format that can be used.
Rendered content can be a format used for displaying the
content or of a format useable to perform some other pre-
defined action. Rendered content can include graphics as well
as text.

Most content includes an expiration date because it is
expected that resources from an entity providing content that
are available online (e.g., from a website) or otherwise acces-
sible over a network will have updates or change over time.
Although some resources change infrequently and have a
long expiration date, many applications expect updates and
changes to online content.

Embodiments of the invention are applicable for client use
with both static and dynamic server-hosted content.
“Dynamic” content refers to content that may be customized
for an individual user or that changes over time; “static”
content refers to content that may be the same for all users or
does not change. Where dynamic server-hosted content is
available, applications may connect to an online service to
download updates, functionality, and/or additional content.
For example, a word processing application may download
new fonts or document templates. A presentation application
may download new slide presentation themes. In addition,
background images and themes may be downloaded to
change visuals and/or sounds on a client device.

Content received by a client over a network can be stored in
a cache for local access by a client application. A “cache”
refers to a defined portion of a memory that is easily and/or
quickly accessible by a processor. In accordance with certain
embodiments, the memory on which the cache is defined does
not necessarily need to be located in direct proximity to the
processor and may be coupled to the processor via a wired or
wireless connection. According to one embodiment, the
cache does not need to be physically part of auser’s device so
long as the network over which the data from the cache must
travel enables a fast load and rendering time.

US 9,122,766 B2

3

Caching of content received by a client from a server over
anetwork enables efficient rendering because, while the con-
tent is valid, the client does not need to request a copy from the
server each time a client application launches (or attempts to
access the content during other operations).

Content sent from a server for use by a client can be
provided in a form of a package. As used herein a “package”
refers to the grouping of data including content that is
received by a client for use as a unit. The package may be sent
over a network in multiple packets or other sets of data that
can be transmitted via various network protocols; however,
the complete message (including content) intended to be sent
from the server for use by a client is referred to as the package.

Server-hosted content refers to content that is stored on a
server and can be provided as a Web service, Cloud-based
service, file transfer service (e.g., via FTP) or other online or
network-based service. Server-hosted content can include,
but is not limited to, web content (e.g., a webpage, data, or
services), cloud-based content (e.g., data or services), and
downloadable files such as from a file server.

FIG. 1 shows an operating environment in accordance with
an embodiment of the invention. Referring to FIG. 1, a client
110 and a server 120 communicate via a network 130.

The client 110 and the server 120 can involve computing
systems configured with one or more central processing units
(CPUs), memory, mass storage, and 1/O devices (e.g., net-
work interface, user input device). Elements of the computing
system can communicate with each other via a bus. The
hardware platform of computing systems can be embodied in
many forms including but not limited to, a personal computer,
a server computer, a hand-held or laptop device, a multipro-
cessor system, a microprocessor-based system, program-
mable consumer electronics, and a distributed computing
environment that includes any of the above systems or
devices.

In certain embodiments, the client 110 can be embodied as
a computing device including, but not limited to, a personal
computer, a tablet, a mobile device, a personal digital assis-
tant (PDA), a smartphone, a laptop (or notebook or netbook)
computer, a gaming device or console, a desktop computer, or
a smart television.

In certain embodiments, the server 120 can be embodied as
a computing device including, but not limited to, a server
computer, an enterprise computer, a personal computer, a
multiprocessor system, a microprocessor-based system, and a
combination thereof. It should be understood that the listing
of client computing devices and the server computing devices
is not intended to be limiting and that the client and server
may be embodied in the same or different form.

Communication between computing devices in a client-
server relationship may be initiated by a client sending a
request to the server asking for access to a particular resource
or for particular work to be performed. The server may sub-
sequently perform the actions requested and send a response
back to the client.

In accordance with certain embodiments of the invention,
the network 130 may be any suitable communications net-
work including, but not limited to, a cellular (e.g., wireless
phone) network, the Internet, a local area network (LAN), a
wide area network (WAN), a WiFi network, or a combination
thereof. Such networks may involve connections of network
elements, such as hubs, bridges, routers, switches, servers,
and gateways. The network 130 may include one or more
connected networks (e.g., a multi-network environment)
including public networks, such as the Internet, and/or private
networks such as a secure enterprise private network. As will
be appreciated by those skilled in the art, communication

10

15

20

25

30

35

40

45

50

55

60

65

4

networks can take several different forms and can use several
different communication protocols.

In one embodiment, the server can host content 121 for an
application 111 running on the client 110. The server 120 can
host a library of content 121 and may include, but is not
limited to, a file store or a database storing downloadable
application content. The content 121 can be arranged in any
suitable unit or set for a particular application to which it is
directed. The unit or set of content 121 can be provided to a
client 110 in the form of a package such as package 230
shown in FIG. 2B that includes the content 121 and other data
or metadata. The package 230 can include information for
expiring a prior data package, the content 121, and optionally
other data such as information for checking whether the con-
tent 121 is to be updated/modified.

Downloadable application content can include a manifest
of'metadata for content. The content provided, for example by
the metadata, can include, for example, one or more templates
for a word processing application. Other examples of content
include skins (e.g., a custom graphical layout or theme) for a
graphical user interface for any suitable software, and images
that may be used for a rotating desktop background for an
operating system. Another example is an advertisement or
demo of a featured game for use in a gaming system. Yet
another example is a set of slideshow presentation templates
or themes for use in a presentation application. And yet
another non-limiting example is a daily message or tip for a
media or design application.

The client 110 includes at least one application 111 and a
current and next cache 112, 113. The current cache 112 is
filled first, either by pre-seeded content or a one-time syn-
chronous call to fill the cache with content. The content in
current cache 112 does not have a defined expiration. Instead,
when content is provided to the next cache 113, an expiration
value provided with the content indicates the expiration of the
content in the current cache 112. The expiration value can be
stored with the package content in a content cache or pro-
cessed during download of the package content and stored
separately from the content in the caches 112, 113. The cur-
rent and next caches 112, 113 may be stored in one or more
computer-readable media associated with the client 110.

It should be appreciated by those skilled in the art that
computer-readable media include removable and non-remov-
able structures/devices that can be used for storage of infor-
mation, such as computer-readable instructions, data struc-
tures, program modules, and other data used by a computing
system/environment. A computer-readable medium includes,
but is not limited to, volatile memory such as random access
memories (RAM, DRAM, SRAM); and non-volatile memory
such as flash memory, various read-only-memories (ROM,
PROM, EPROM, EEPROM), magnetic and ferromagnetic/
ferroelectric memories (MRAM, FeRAM), and magnetic and
optical storage devices (hard drives, magnetic tape, CDs,
DVDs); or other media capable of storing computer-readable
media now known or later developed. Computer-readable
media should not be construed or interpreted to include any
propagating signals.

In one embodiment, the current and next caches 112, 113
are stored in a local memory of the client 110. The local
memory can be volatile or non-volatile memory. In another
embodiment, the current and next caches 112, 113 are stored
in memory accessible over a fast local network.

FIG. 2A illustrates data flow in an operating environment
in accordance with an embodiment of the invention. Refer-
ring to FIG. 2A, a client having a current cache 210 and a next
cache 220 receives a package 230 of content over a network
from a server. Data in the package 230 received by the client

US 9,122,766 B2

5

is first stored in the next cache 220. As illustrated in FI1G. 2B,
included in the package 230 is the content 231 and a value 232
used to indicate the expiration of data in the current cache
210. Other data 233 may also be included in the package. The
value 232 can be stored with the package content 231 in the
next cache 220 or processed during download of the package
230 and stored separately from the content stored in the next
cache 220. When processing the package, the data of the
package can be parsed to determine the value 232.

When the value 232 indicates that the content in the current
cache 210 has expired, the content 231 is moved from the next
cache 220 to the current cache 210 and new content can be
downloaded to the next cache 220.

During the process of moving the content 231 from the next
cache 220 to the current cache 210, the “moving” of the
content can be accomplished in a variety of ways. In one
embodiment, the moving of the content can be a “copy”
operation where a copy of the content in the next cache 220 is
stored in the current cache 210, resulting in both caches
having a same content until the next cache 220 is over written.
For example, the content can be copied from a first known
location (for example, in a registry) to a second known loca-
tion. The copy-style operation can be performed in cases
where the expiration value is stored in a separate location
such that old expiration data can remain without affecting the
expiration of the content currently in second known location
(e.g., for the current cache 210).

In another embodiment, the moving of the content can be a
“copy and erase” operation where a copy of the content in the
next cache 220 is stored in the current cache 210 and erased
from the next cache 220. The copy and erase functionality can
be bit-by-bit, word-by-word, line-by-line, or any other suit-
able operation.

In yet another embodiment, the moving of the content can
be a change in pointer. In one such embodiment, the change in
pointer can be accomplished by storing a pointer to the
memory location that is the “current” location and deriving
which is the “next” known location from a set number of
known locations. For example, if A and B are known loca-
tions, A can be set as the current location (and thus B can be
set as the next location), and when the time comes to move the
content from the B location to the A location, B can be set as
the current location via the pointer, the content in A can be
replaced (with the content for the next cache), and upon
expiration of the content in B, A can be set as the current
location via the pointer.

In another such embodiment, the change in pointer can be
accomplished by storing a pointer to the “next” location and
the “current” location explicitly. In this case a set number of
known locations is not used. Rather, the “current” location
can be known location A and the “next” location be known
location B such that when the moving from the next location
to the current location occurs, the location B can be set as the
“current” location, new content can be downloaded, and the
pointer for the “next” location can point to an additional
location C in which the new content is downloaded and
stored.

In certain embodiments, the current cache 210 may be
pre-seeded with content 240 during installation of an appli-
cation. In another embodiment, if the current cache is deter-
mined to be empty, the content 231 from the package 230 can
be stored in the current cache 210 and new content can be
downloaded to the next cache 220 along with the expiration
value for the current cache 210.

FIG. 3 shows a method for replacement time based caching
in accordance with an embodiment of the invention. As
shown in FIG. 3, a client receives a new package 310. The

10

15

20

25

30

35

40

45

50

55

60

65

6

receipt of the new package may occur after content in a next
cache is moved to a current cache due to expiration of the
content in the current cache. The new package data is stored
in the next cache (e.g., 220 of FIG. 2A) and can include new
content and an expiration value for the current cache (e.g.,
content 231 and value 232 shown in FIG. 2B). From the new
package data, the prior content expiration is determined 320.

In one embodiment, the new package data provides an
amount of time (e.g., number of days, hours, and/or minutes)
for the prior content to be valid in a similar fashion as used by
the TTL approach; however, instead of the new package data
providing expiration for its own content, the expiration
amount is used to determine the expiration for the content
from a prior package that is currently valid. For example, in
one such embodiment, determining the prior content expira-
tion from the new content package data 320 includes reading
the expiration amount from the new package data, reading the
client system clock at the time of download of the new pack-
age data and assigning an expiration of the current cache
content as the time of download plus the expiration amount.
For example, the expiration amount from the new package
data can be 24 hours and the time of download can be 8:30 am
on Tuesday, Jan. 3, 2012. Then, the expiration of the current
cache content (not the content from the new package data) is
determined to be 8:30 am on Wednesday, Jan. 4, 2012.

In another embodiment, the new content package data pro-
vides a value that is used to determine the prior content
expiration. The value canrepresent a natural number (but may
be in the form of hexadecimal, binary or other base system).
Of course, embodiments are not limited to natural number
representations.

According to an embodiment, the value provided with the
new content package data is used to indicate how many of a
predetermined interval of time until the current data is
expired. For example, the predetermined interval of time can
be a number of minutes, hours or days, such as 24 hours.
Then, a value of 1 can indicate, for example, 24 hours from the
download time. As another example, the predetermined inter-
val of time can be a number of milestones (e.g., a number of
midnights or Tuesdays or other date/time). In one such
embodiment, a value of 1 can indicate midnight of the current/
first day and a value of 2 can indicate midnight of the next/
second day. In many embodiments, a value of 0 can indicate
immediate expiration of the current data.

Once the prior content expiration is determined from the
new content package data 320, the current content remains
valid until, for example, the client system clock indicates that
the expiration date/time has occurred. At that time, the current
content becomes invalid and the content from the new pack-
age is made the current content 330. A next new package
provides the expiration for the content that was made the
current content in step 330.

The validity of the prior content (e.g., the current content)
can be checked during or after specific operations (e.g., a
trigger mechanism). For example, the validity of a current
content can be checked during a booting/launch phase of an
application. If the expiration check indicates that the content
is valid, the content is rendered. In one embodiment, the
expiration check determines whether the expiration date/time
has lapsed by comparing the date/time of the system clock
with the date/time of expiration.

When using a trigger mechanism to check the validity of
the content, the current content may be used past the expira-
tion date/time until the expiration of the content is checked.
For example, when the validity check is performed close to
expiration, for example one or more seconds or minutes
before expiration, the validity check still indicates that the

US 9,122,766 B2

7

content is valid and the content will be rendered. The current
rendered content can remain during the time between the
rendering of the content and the next operation that would
cause the validity to be checked, for example upon a reboot or
other operation where the content is to be re-rendered.

In one embodiment, only two packages will be stored at a
time—one that is providing the current data to be rendered
and a second that provides replacement content and the expi-
ration of the current data. In another embodiment, additional
packages can be stored, the content of each package being
provided with an expiration by a package that followed. In
certain cases where more than two packages are stored, a
maximum number of packages that are to be received and
stored can be established. Priority and/or overwrite processes
may be utilized in cases having more than two downloaded
packages to ensure that the content is provided to the client in
a manner desired by a content provider.

As one example of a priority/overwrite process, a first
content A can be downloaded and a second content B can be
downloaded (and used to provide the expiration of A). A third
content C can be downloaded. The third content C can have an
“overwrite” priority such that C replaces B and is used to
re-determine the expiration of A. A fourth content D can then
be downloaded. The fourth content D may have a “lazy”
priority such that D is used to determine the subsequent
expiration of C.

As one example of a multi-cached scenario where more
than two packages are stored, the expiration determination
can take a variety of forms. In one embodiment, two forms of
determining the expiration of a prior content may be used.
The two forms can be calculating expiration at time of down-
load and calculating expiration at the time when the down-
loaded content becomes the next content.

As one example of determining the expiration of a prior
content, a first content A can be downloaded and a second
content B can be downloaded. In one embodiment, B can
indicate an expiration of 24 hours and the expiration of A can
be setas 24 hours from the time B is downloaded. In a further
embodiment, a third content C can be downloaded. With an
expiration value from C of 24 hours, the expiration of B canbe
set as 24 hours from the time C is downloaded or, in another
embodiment, the expiration of B can be set as 24 hours from
the time B becomes rendered content and C becomes the next
to be rendered content. The expiration of A may also alterna-
tively be set as 24 hours from the time A is rendered and B
becomes the next to be rendered content.

FIGS. 4A-4D illustrate data flow when performing
replacement time based caching in accordance with an
embodiment of the invention.

Referring to FIG. 4A, a client computing device 400
includes a current cache 401 and a next cache 402. In opera-
tion, anew package sent from a server 410 over a network 420
is received and stored in the next cache 402. New package 430
includes new content Content 2 and data p-expiration related
to the expiration of the content Content 1 in the current cache
401. Referring to FIG. 4B, the expiration date for Content 1
stored in the current cache 401 is determined from the p-ex-
piration provided with Content 2 stored in the next cache 402.
Content 1 can be rendered so long as it remains valid accord-
ing to the p-expiration. Referring to FIGS. 4C and 4D, when
the Content 1 expires, Content 2 is moved from the next cache
402 to the current cache 401. A new package can then be
received as shown in FIG. 4A.

At a time of the expiration of the current content Content 1
(where cache is actively expired) or at a time of a check of the
expiration indicating that the expiration date/time of the cur-
rent content Content 1 has lapsed (where a check is triggered

30

40

45

55

8

by a specific operation or event), the Content 2 can be moved
to the current cache 401. The move can be initiated immedi-
ately or at a time the application is idle (e.g., after active
processes are completed).

FIG. 5 shows a process flow of a system using replacement
time based caching in accordance with an embodiment of the
invention. In the embodiment illustrated by FIG. 5, the cur-
rent cache is referred to as Cache A and the next cache is
referred to as Cache B for brevity.

When a client starts (500) either for the first time or after
being offline and launches, the current cache Cache A and the
next cache Cache B are checked for content (501). The check-
ing of Cache A and Cache B may be performed sequentially
or in parallel. When checking Cache A and Cache B (502)
results in an indication that the caches are empty, Cache A and
Cache B are filled with content (503). In many embodiments,
Cache A and Cache B are checked sequentially. In one
embodiment, content may be rendered as soon as cache A is
determined to have content.

In accordance with certain embodiments of the invention,
Cache A content is filled first, either by pre-seeded content or
aone-time synchronous call to fill the cache with content. The
synchronous call performs the request to the server and
receives content from the server. The next step proceeds once
the content is received from the server.

Ifit is determined that Cache B has content while Cache A
does not have any content, the content in Cache B is moved to
Cache A. Cache B may be filled with content at any time.
Cache B may be filled by a request to the server (in a “pull”
approach) or the server may push content to the client. In
certain embodiments, Cache B is always filled such that cache
B does not remain empty and can provide an expiration for
cache A content. If the client is not able to connect to the
server after content is moved from Cache B to Cache A, then
upon connection to the server (either at launch or during use),
Cache B is filled with new content and an expiration value is
provided for Cache A. The expiration of cache A content is
determined using an expiration value provided with the con-
tent being stored in Cache B.

When the caches are indicated as having content, the expi-
ration value provided with the content in Cache B is checked
(504) to determine if the content in Cache A has expired.
When checking the expiration value (504) indicates that the
content in Cache A is valid (not expired), then the content in
Cache A is rendered (505).

If the expiration value check (504) indicates that the con-
tent in Cache A expired, then the content in Cache B is moved
from Cache B to Cache A (506) and the content in Cache A
moved from Cache B to Cache A is rendered (505).

After the content is moved from Cache B to Cache A (506),
Cache B is filled with new content (507), which also provides
the expiration value for the content currently in Cache A. The
steps 504-507 can continue in a loop until the client stops
operations.

FIGS. 6A and 6B show a representation of an example
application utilizing replacement time based caching in
accordance with an embodiment of the invention. In the
example, a client word processing application includes online
content received from a server. The online content may
appear to the user upon launch of the word processing appli-
cation. Because the online content is stored in a cache, the
content may also be used offline.

In accordance with embodiments of the invention, two sets
of content are present for the client word processing applica-
tion. The two sets of content include one set of valid content
and one set of content for replacing the valid content and that
defines the expiration of the valid content. The two sets of

US 9,122,766 B2

9

content can be stored in two caches: a current cache (for the
valid content) and a next cache (for the replacement content).
Although two caches are described, more than two caches can
be provided. In addition, the two (or more) caches may be
stored at different locations of a same memory or storage
device or on different memories or storage devices (or a
combination thereof).

Referring to FIG. 6 A, when a user of a client computing
device 610 launches the application to create a new docu-
ment, a screen or page providing template options may appear
to the user. The particular templates 615 shown on the screen
or page can include templates that are previously used or
automatically cached locally and/or metadata (e.g., the infor-
mation used to render one or more of the templates 615)
stored in the current cache. For an initial launch of an appli-
cation, the templates 615 may be rendered from pre-seeded
content that is provided during installation of the word pro-
cessing application. During subsequent launching of the
application (and after the pre-seeded content has expired), the
templates 615 may be rendered from downloaded content
moved into the current cache and indicated as valid (not
expired) by the next cache.

The templates 615 from content stored in the current cache
and rendered for display on the screen of the client computing
device 610 can be predictably provided to a user through
using replacement time based caching in accordance with an
embodiment of the invention.

In accordance with embodiments of the invention, the ren-
dered templates 615 do not define their own expiration. The
expiration of the rendered templates 615 is defined by content
in the next cache. The content in the next cache stores content
that will replace expired content in the current cache. For
example, the content in the next cache can define the expira-
tion of the rendered templates 615 by a value indicating that
the rendered templates 615 will expire at a next milestone
(according to clock time at the client). At that time, the tem-
plates 615 expire and the content from the next cache is
moved to the current cache and rendered as new templates
625 suchas shown in FIG. 6B. When the content from the next
cache is moved to the current cache, new content is down-
loaded from the server and stored in the next cache. The new
content downloaded from the server provides the expiration
of the new templates 625.

In situations where the client does not connect to the server
for an extended period of time and cannot download the new
content to fill the next cache, there is no expiration provided
for the current content and the content being rendered will be
considered valid. Because expiration of current content is
provided by the replacement content, the current content will
not have an expiration until replacement content arrives.
Therefore, valid content will be available even with irregular
usage of the client. In addition, a user will perceive that
content is turned over at a predictable time, such as a next
milestone (such as midnight) experienced by the user (ac-
cording to the client device) in the example explained above.

FIG. 7 shows a process flow of a system using replacement
time based caching and update check in accordance with an
embodiment of the invention.

Similar to the embodiments described with respect to FIG.
5, when a client starts (700), the current cache Cache A and
the next cache Cache B are checked for content 701. The
checking of Cache A and Cache B may be performed sequen-
tially or in parallel. When a check of Cache A and Cache B
(702) indicates that one or both of the caches are empty,
Cache A and Cache B are filled with content (703) to ensure
that both Cache A and Cache B have content. In many
embodiments, Cache A and Cache B are checked sequen-

10

15

20

25

30

35

40

45

50

55

60

65

10

tially. In one embodiment, content may be rendered as soon as
cache A is determined to have content.

In accordance with certain embodiments of the invention,
Cache A content is filled first, either by pre-seeded content or
a one-time synchronous call to fill the cache with content.

Ifit is determined that Cache B has content while Cache A
does not have any content, the content in Cache B is moved to
Cache A. Cache B may be filled with content at any time.
Cache B may be filled by a request to the server (in a “pull”
approach) or the server may push content to the client. In
certain embodiments, Cache B is always filled such that cache
B does not remain empty and can provide an expiration for
Cache A content. If the client is not able to connect to the
server after content is moved from Cache B to Cache A, then
upon connection to the server (either at launch or during use),
Cache B is filled with new content and an expiration value is
provided for Cache A. The expiration of Cache A content is
determined using the expiration value provided with the con-
tent being stored in Cache B.

Once it is confirmed that there is content in the caches
(702), Cache B data is checked (704). From the Cache B data,
the expiration value is checked (705) to determine if the
content in Cache A has expired. When checking the expira-
tion value (705) indicates that the content in Cache A is valid
(not expired), then the content in Cache A is rendered (706).

In the embodiment shown in FIG. 7, Cache B data also
includes a value indicating a date or time for checking
whether there is new replacement content that should take the
place of the content currently in Cache B. This checking value
can be provided as part of the other data 233 as shown in FIG.
2B.

The update check of the process shown in FIG. 7 facilitates
the replacement of potentially un-useful or outdated next/
replacement content while the current cache is still valid
according to a “pull” style model. In this pull style embodi-
ment, the checking value is smaller than the expiration value
so that the update check occurs while the content in Cache A
is still valid. If the checking value indicates that it is time to
check forupdates (707), the server is checked for replacement
content (708). If the server indicates that there is replacement
content (r-content) (709), the content in Cache B can be
replaced (710) with the r-content.

In another embodiment, a “push” style model may be used.
In one such embodiment, a client can register to receive
notifications from a server in case content is to be replaced.
For example, the client can receive a notification that Cache B
content needs to be updated and then the client is provided
with (or requests and receives) replacement content to store in
Cache B.

In many embodiments, only the r-content is provided and
the expiration value for Cache A is not updated. In one
embodiment, a new expiration value for Cache A may be
provided. In certain embodiments, a checking value is pro-
vided with the r-content so that the server is checked again. In
other embodiments, the checking value provided with the
content in Cache B is used again if there is enough time
between checking and Cache A expiration.

FIGS. 8A-8G provide an example of one such case by
illustrating data flow when performing replacement time
based caching and update check in accordance with an
embodiment of the invention.

FIG. 8A shows data flow upon the expiration of the Content
1 in the current cache 801. When Content 1 is indicated as
expired by the expiration date provided from the next cache
data, the Content 2 from the next cache 802 is moved to
current cache and new content (Content 3) from new package
3 810 is received from a content server 820 over the network

US 9,122,766 B2

11

830 and stored in the next cache 802 as shown in FIG. 8B.
Package 3 810 also includes an expiration value (Expire Cur-
rent) for the content in the current cache (Content 2) and a
check again value (Check Again) for the content in the next
cache (Content 3). Inthe example, the expiration value Expire
Current=5 and the check again value Check Again=2. In one
embodiment, Expire Current=5 can provide an expiration
time of the end of 5 days for Content 2 in the Current cache
801 and Check Again=2 provides an update check at the end
of 2 days for Content 3 in the next cache 802.

Referring to FIG. 8C, at the end of 2 days, a request is sent
from the client 840 to the server 820 to determine if there is
replacement content. Referring to FIG. 8D, there may be no
updates at the server 820 at the date/time the request is sent. A
new value for Check Again may be sent by the server 820 in
response to the update check or the Check Again value from
Package 3 810 may be maintained. In the example, since
Content 2 in the current cache 801 is still valid at the end of
day 4 (Check Again=2), a request is sent from the client 840
to the server 820 to determine if there is replacement content
as shown in FIG. 8E. Referring to FIG. 8F, there may be an
update available at the server 820. In this case, replacement
content (r-content) 850 having the update is received from the
server 820 over the network 830 and stored in place of the
Content 3 in the next cache 802 as shown in FIG. 8G.

Returning to FIG. 7, if the expiration value check (705)
indicates that the content in Cache A expired, then the content
in Cache B (whether the originally provided content to Cache
B or the new replacement content such as shown in FIG. 8G)
is moved from Cache B to Cache A (711), and the content in
Cache A that was originally in Cache B is rendered (706). For
the example shown in FIGS. 8A-8G, at the end of 5 days
(based on Expire Current=5), Content 2 in the current cache
801 expires, and the r-content is moved from the next cache
802 into the current cache 801.

After the content is moved from Cache B to Cache A 711,
Cache B is filled with new content 712, which also provides
the expiration value for the content currently in Cache A (and
a checking value). The steps 704-712 can continue in a loop
until the client stops operations.

In accordance with embodiments of the invention, when a
client application renders cached content, the application
checks to see if the expiration defined by the content in the
next cache (which is not being rendered) has been reached/
lapsed. If the expiration has been reached/lapsed, the content
in the next cache (e.g., Cache B) is moved to the current cache
(e.g., Cache A) and immediately rendered. New content is
then downloaded to fill the next cache (e.g., Cache B) and
define the expiration for the content formerly in the next
cache but now in the current cache (e.g., the content moved
from Cache B to Cache A).

By using the systems and methods described herein, a
user’s perception that that content turned over at a predictable
time (“overnight/over midnight”) can be maintained. Unex-
pired/valid content will be available to replace the expired
content because content does not expire until the replacement
content is downloaded (since the replacement content defines
the expiration).

As previously mentioned, TTL caching or a time of expi-
ration approach is often used to turn over into new content.
TTL caching can result in content expiring at an inopportune
time based on when it was first downloaded/became valid and
can allow for content to potentially expire at a time when a
client is not running and/or there isn’t any new content to
replace it when the client is launched. For example, a TTL
cached content may have a time of 60 minutes for the content
being downloaded to be valid before expiring. Then, the TTL

10

25

35

40

45

50

12

cached content will expire at download time+60 minutes,
which may not be convenient for a user who would like to
return to the content 65 minutes later. Once the content
expires, the client must wait for new content or the client must
render old content while it retrieves new content and then
make a switch over to the new content at what may be an
inopportune time.

The time of expiration approach has similar problems. The
time of expiration approach sets a particular date and time
after which the content is considered expired/invalid. This
allows for content to be turned over at a logical time given
regular usage of the client, but breaks down when content
expires at a time when a client is not running and/or there isn’t
any new content to replace it when the client is launched.

This can mean that the client must wait for new content or
that the client must render old content while it retrieves new
content and then make a switch over to the new content at an
inopportune time. For example, a time of expiration approach
may set a date of January 3" at 11:59 pm for content to expire.
However, if a client is not running because a user is on a
vacation for the week after New Year’s Day, the content will
have been expired by the time the client is run again. In this
case, the old content may be rendered while new content is
retrieved or, in some cases, no content will be rendered until
the new content is retrieved.

In another scenario, even where a second (or more) set of
content is downloaded, but each downloaded content indi-
cates its own expiration, similar issues can arise when a client
is not run before the latest of the expiration dates pass. For
example, a first set of content stored in one cache and indi-
cating its own expiration of January 3 at 11:59 pm and a
second set of content stored in another cache and indicating
its own expiration of January 4% at 11:59 pm will have a same
issue as the above example if a user is on vacation for the week
after New Year’s Day.

In contrast, accordance with various embodiments of the
invention, a user’s experience does not involve expired con-
tent in which a client must wait for new content or the client
must render old content while the client retrieves new content
and then makes a switch over to the new content at an inop-
portune time.

Certain techniques set forth herein may be described in the
general context of computer-executable instructions, such as
program modules, executed by one or more computers or
other devices. Certain embodiments of the invention contem-
plate the use of a computer system or virtual machine within
which a set of instructions, when executed, can cause the
system to perform any one or more of the methodologies
discussed above. Generally, program modules include rou-
tines, programs, objects, components, and data structures that
perform particular tasks or implement particular abstract data
types.

Of course, the embodiments of the invention can be imple-
mented in a variety of architectural platforms, devices, oper-
ating and server systems, and/or applications. Any particular
architectural layout or implementation presented herein is
provided for purposes of illustration and comprehension only
and is not intended to limit aspects of the invention.

Any reference in this specification to “one embodiment,”
“an embodiment,” “certain embodiment,” etc., means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the invention. The appearances of such
phrases in various places in the specification are not neces-
sarily all referring to the same embodiment. In addition, any
elements or limitations of any invention or embodiment
thereof disclosed herein can be combined with any and/or all

US 9,122,766 B2

13

other elements or limitations (individually or in any combi-
nation) or any other invention or embodiment thereof dis-
closed herein, and all such combinations are contemplated
within the scope of the invention without limitation thereto.
It should be understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.
What is claimed is:
1. A method of providing server-hosted content on a client
device, the method comprising:
receiving a prior package;
receiving a subsequent package;
storing a current content received with the prior package in
a current cache associated with a client application;

storing a next content received with the subsequent pack-
age in a next cache associated with the client application;
and

assigning an expiration time to the current content received

with the prior package using a read value received with
the next content of the subsequent package.

2. The method of claim 1, further comprising:

rendering the current content; and

moving the next content to the current cache after the

expiration time for the current content is reached or
passes.

3. The method of claim 2, further comprising:

receiving, after the subsequent package, a third package

comprising a third value and a third content;

assigning an expiration time for the next content stored in

the current cache by using the third value; and
rendering the next content stored in the current cache.

4. The method of claim 2, further comprising checking a
content server for replacement content for the next content
before the expiration time for the current content is reached or
passes.

5. The method of claim 1, wherein assigning the expiration
time to the current content received with the prior package
using the read value received with the next content of the
subsequent package comprises:

setting the expiration time for the current content received

with the prior package as a number of milestones mul-
tiplied by the read value.

6. The method of claim 1, wherein the read value indicates
an amount of time until the current content expires, wherein
assigning the expiration time to the current content received
with the prior package using the read value received with the
next content of the subsequent package comprises:

setting the expiration time for the current content received

with the prior package to a time the prior package was
received plus the read value.

7. The method of claim 1, wherein the read value indicates
a day and time for the current content to expire, wherein
assigning the expiration time to the current content received
with the prior package using the read value received with the
next content of the subsequent package comprises:

setting the expiration time for the current content received

with the prior package to the day and time for the current
content to expire indicated by the read value.

8. A computer-readable device having instructions stored
thereon that when executed by a computing device cause the
computing device to perform a method comprising:

instantiating a client application comprising two caches

associated therewith;

rendering a first content stored in a first cache of the two

caches associated with the client application;

15

20

25

30

35

40

45

50

55

60

65

14

storing a next content in a second cache of the two caches
associated with the client application, the next content
being received after the first content; and

maintaining the first content associated with the client

application as valid until an expiration time for the first
content is determined to lapse, wherein a next expiration
information included with the next content provides the
expiration time for the first content.

9. The device of claim 8, wherein the method further com-
prises:

moving the next content to the first cache after the expira-

tion time lapses;
storing a third content in the second cache, the third content
being received after the next content, wherein a third
expiration information included with the third provides
a next expiration time for the next content; and
rendering the next content stored in the first cache.
10. The device of claim 8, wherein the next expiration
information included with the next content comprises an
expiration value for the first content,
wherein maintaining the first content associated with the
client application as valid until the expiration time for
the first content is determined to lapse comprises:

setting the expiration time for the first content as a number
of milestones multiplied by the expiration value; and

checking the expiration time to determine whether the
expiration time has been reached, a result that the expi-
ration time has been reached indicating that the expira-
tion time has lapsed and a result that the expiration time
has not been reached indicating that the first content is
valid.
11. The device of claim 8, wherein the next expiration
information included with the next content comprises an
expiration value for the first content, the expiration value
indicating an amount of time,
wherein maintaining the first content associated with the
client application as valid until the expiration time for
the first content is determined to lapse comprises:

setting the expiration time for the first content to a time the
next content is received plus the amount of time indi-
cated by the expiration value; and
checking the expiration time to determine whether the
expiration time has been reached, a result that the expi-
ration time has been reached indicating that the expira-
tion time has lapsed and a result that the expiration time
has not been reached indicating that the first content is
valid.
12. The device of claim 8, wherein the next expiration
information included with the next content comprises an
expiration value for the first content, the expiration value
indicating a day and time,
wherein maintaining the first content associated with the
client application as valid until the expiration time for
the first content is determined to lapse comprises:

setting the expiration time for the first content to the day
and time indicated by the expiration value; and

checking the expiration time to determine whether the
expiration time has been reached, a result that the expi-
ration time has been reached indicating that the expira-
tion time has lapsed and a result that the expiration time
has not been reached indicating that the first content is
valid.

13. The device of claim 8, wherein the method further
comprises checking a content server for replacement content
for the next content before the expiration time for the first
content lapses.

US 9,122,766 B2

15

14. A system for replacement time-based caching, the sys-
tem comprising:

one or more memory devices;

a current cache stored on the one or more memory devices;

a next cache stored on the one or more memory devices;

and

a processor coupled to the one or more memory devices,

the processor operating to:

instantiate a client application, the current cache and the
next cache being associated with the client applica-
tion;

render a first content stored in the current cache; and

maintain the first content as valid until an expiration time
for the first content is determined to lapse, wherein a
next expiration information included with a next con-
tent stored in the next cache provides the expiration
time for the first content.

15. The system according to claim 14, wherein the proces-
sor is further operating to:

store the next content in the current cache when the expi-

ration time for the first content is determined to lapse;
store a third content in the next cache, wherein a third

expiration information included with the third content

provides a next expiration time for the next content; and
render the next content stored in the current cache.

16. The system according to claim 15, wherein to maintain
the first content as valid until the expiration time for the first
content is determined to lapse, the processor operates to:

set the expiration time for the first content using the next

expiration information included with the next content,
wherein the next expiration information comprises an
expiration value for the first content; and

10

15

20

25

30

16

check the expiration time to determine whether the expi-
ration time has been reached, a result that the expiration
time has been reached indicating that the expiration time
has lapsed and a result that the expiration time has not
been reached indicating that the first content is valid.

17. The system according to claim 16, wherein to set the
expiration time for the first content using the next expiration
information included with the next content, the processor
operates to:

set the expiration time for the first content as a number of

milestones multiplied by the expiration value.

18. The system according to claim 16, wherein the expira-
tion value indicates an amount of time,

wherein to set the expiration time for the first content using

the next expiration information included with the next
content, the processor operates to:

setthe expiration time for the first content to a time the next

content is received plus the amount of time indicated by
the expiration value.

19. The system according to claim 16, wherein the expira-
tion value indicates a day and time,

wherein to set the expiration time for the first content using

the next expiration information included with the next
content, the processor operates to:

set the expiration time for the first content to the day and

time indicated by the expiration value.

20. The system according to claim 14, wherein the proces-
sor is further operating to check a content server for replace-
ment content for the next content before the expiration time
for the current content is determined to lapse.

#* #* #* #* #*

